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“high-resolution modeling”
nonhydrostatic cloud dynamics (i.e., anelastic,
compressible, quasi-compressible, etc. )

“microphysics”
processes controlling formation of cloud
droplets and ice crystals, their growth and

fallout as precipitation



High-resolution modeling and cloud microphysics:
Why should we care?

Because of the tight coupling between the cloud
microphysics and cloud dynamics, and important effects
of cloud microphysics on the atmospheric part of the
hydrologic cycle, on radiative processes, on the coupling
with the surface, and on cross-tropopause transport.

[N.B.: These are (parameterization)? problems if one does not resolve
clouds: parameterized microphysics in parameterized clouds...]



-Latent heating

(condensation.evaporation, sublimation/resublimation, freezing melting)
-Condensate loading

(mass of the condensate carried by the flow)
-Precipitation

(fallout of larger particles)

-Coupling with surface processes
(downdrafts leading to surface-wind gustiness, inject BL with fresh air)

-Convective organization
(mostly dynamical process, but affected by microphysics, e.g., the strength
of a cold pool)
-Radiative transfer
(mostly mass for absorption/emission of LW, particle size important for
SW scattering, size and composition important for SW absorption)
-Cloud-aerosol interactions
(aerosol affect clouds: indirect aerosol effects, but clouds process aerosols
as well)
-Transport across tropopause
(convective over-shooting, dehydration, etc)
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Traditional approach to bulk cloud microphysics
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FiG. 1. Schematic depicting the cloud and precipitation processes included
in the model for the study of narrow cold-frontal rainbands.




So what level of complexity of cloud microphysics scheme is
required?

Depends on the particular cloud system:

deep convection:
- the dynamics Is the driver, so probably a simple scheme
suffices

shallow clouds (especially Sc, maybe shallow Cu):
- dynamics slaved to microphysics, significant fidelity
needed.



Modeling studies involving deep convection — convective dynamics as the driver:

early studies of deep convection (late 60ies, early 70ies; UK, US, Japan)
warm-rain microphysics only

early studies of organized convection (70ies, early 80ies; UK, US):
warm-rain microphysics only

super-parameterization (late 90ies)
extremely simple ice (Grabowski) or diagnostic ice (Khairotdinov)

convection-permitting GCM (early 00ies, Japan)
extremely simple ice



But what about radiative transfer?

Particle sizes are needed there;

effective radius of cloud droplets

and ice crystals. effective radius of ice crystals

(based on observalions by MeFaruhar and Haymslield)

1000

Use observations!

Cloud droplet concentration
correlates with aerosol loading (but
be careful...)
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Ice particle size observed to depend
the on mass of ice (again, many

caveats...) 1
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Can deep convection be significantly affected by aerosols?
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Graupel or small hail
Raindrop
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* Small cloud droplet

* Smaller cloud droplet
‘% Aerosol particles

Growing Mature Dissipating

Rosenfeld et al. Science, 2008



Radiative-convective quasi-equilibrium
mimickin Blanetary energy budget

using a 2D cloud-resolving model
solar input
342 Wm
100 columns
24 km
@ 61 levels

Surface temperature = 15° C
Surface relative humidity = 80%
Surface albedo = 0.15

Grabowski J. Climate 2006
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Simulations with the new double-moment bulk microphysics:

Warm-rain scheme of Morrison and Grabowski (JAS 2007, 2008a)
predicts concentrations and mixing ratios of cloud water and rain
water; relatively sophisticated CCN activation scheme with either
pristine or polluted CCN spectra.

Ice scheme of Morrison and Grabowski (JAS 2008b) predicts
concentrations and two mixing ratios of ice particles to keep track of
mass grown by diffusion and by riming; heterogeneous and
homogeneous ice nucleation with the same IN characteristics for
pristine and polluted conditions.

60-day long simulations starting from the sounding at the end of
the single-moment simulations of Grabowski (2006).



Traditional approach to bulk cloud microphysics
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Grabowski J. Climate 2006
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GrabowsKki
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Cloud water and
drizzle/rain water
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GrabowsKki new
J. Climate 2006 simulations
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Microphysics and organized convection:

Can precipitation from organized convection change
due to microphysics, without changing the dynamics?

Kinematic model study with a double-moment warm-
rain and ice microphysics (Morrison and Grabowski
JAS 2007, 2008a, 2008b).



Slawniska et al. (QJ 2009; in press)

IMPACT OF ATMOSPHERIC AEROSOLS ON
PRECIPITATION FROM DEEP ORGANIZED
CONVECTION: A PRESCRIBED-FLOW MODEL STUDY
USING DOUBLE-MOMENT BULK MICROPHYSICS
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2-moment warm-rain
microphysics (4 variables)

2-moment ice microphysics
(3 variables)

PRISTINE/POLLUTED:
droplet concentration in the
convective part ~100/1000 cm-3

(km)
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simulations
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Surface precipitation distribution in all PRISTINE simulations
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Direction of airflow
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Growing Mature Dissipating

Rosenfeld et al Science, 2008



Stratocumulus:
dynamics often slaved
to microphysics.

Fidelity is needed for
the microphysics, but
also a lot of resolution
(LES)...



LES of Sc-topped subtropical BL.

The only difference between the simulations
IS the assumed concentration of cloud
droplets (200 cm-3 for NS and 25 cm3 for
DS), resulting in non-drizzling NS case and
heavily drizzling (~1 mm/day) DS case.

0, profile

]

KX egien radiative export of 0,

Transition from closed to open cells...

Savic-Jovcic and Stevens JAS 2008



after a few
more
hours...

Savic-Jovcic and Stevens JAS 2008



...but Sc not only responses to aerosols, it also very
efficiently processes them...

One drizzle drop consists of thousands of cloud droplets, all
CCN from these cloud droplets are either combined into a
single giant CCN if a drizzle drop evaporates or removed
entirely 1f the drop reaches the surface...

Pockets of open cells (POCs) are manifestation of these
poorly-understood interactions.



POC Missions

* Lowest CN concentration ever measured

* Remarkable contrasts in microphysics and cloud dynamics across
POC boundary [aerosols, drizzle, cloud structure and morphology,
CO and O]

* Ultraclean clouds in optically-thin cloud centers

* Quasi-linear boundary cells with copious drizzle scavenge aerosols

BOUNDARY
POCKET of OPEN CELLS CELL CLOSED-CELL STRATOCUMULUS
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surface '
mixed layer ‘)

VOCALS campaign (Rob Wood, U. of Washington)




Cloud droplet and accumulation model aerosol
concentrations
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Cloud microphysics have important but poorly
understood effects on cloud system dynamics. Simple
arguments, supported by modeling, suggests that this
Impact is most likely the strongest for boundary-layer
clouds, which require the highest spatial resolution.
The effects on deep convection (and arguably on
frontal cloudiness) are unclear .

For indirect (i.e., through clouds) effects of aerosols

on climate, contemporary large-scale climate models
(i.e., GCMs with tens of km gridlength) are not
appropriate (the parameterization? problem).

From the cloud-scale processes point of view, efficient
algorithms to for aerosol-processing by clouds need to
be developed (and tested, e.g., on POCs).



Their Relationship to
Energy Balance,
Atmospheric Dynamics,
and Precipitation
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